×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Cover Story (Issue 6, 2024) | Recent development on critical collapse

  • Share:

Cover Story (Issue 6, 2024) | Recent development on critical collapse

Author: Prof. Zhou-Jian Cao (Beijing Normal University)

    The discovery of the critical phenomena ingravitational collapse by Choptuik is a breakthrough innumerical relativity. Choptuik studied the implosion of amassless scalar field in spherical symmetry. There are two extremities inthis model. At the first extremity, when the initial value of the scalar fieldis weak enough, the field bounces at the center and then is dispersed toinfinity: a flat spacetime remains. At the other one, when the initial value isstrong enough, the field will collapse to form a black hole. Criticalcollapse occurs in the intermediate case between these two extremities.Analytic expressions are very important for understanding the dynamics ofgravitational collapse. However, the high nonlinearity of the Einsteinequations makes it very challenging to seek the analyticsolutions to collapse.

       In a recent article[1], the authors studied the dynamics of critical collapseof the same model as worked with by Choptuik. Approximate analytic expressionsfor the metric functions and matter field in the large-radius region wereobtained, agreeing well with the numerical results.

       It was foundthat, in the central region, owing to the boundary conditions,the equation of motion for the scalar field is reduced to the flat-spacetimeform. Specifically, the smoothness requirement at the center makes thefirst-order derivatives of the metric functions with respect to the arealradius asymptote to zero. Consequently, the terms related to gravityin the equation of motion for the scalar field are negligible. Itis true that the Ricci curvature scalar in the central region can bevery large. However, this quantity is mainly attributed to thesecond-order derivatives of the metric functions and other terms,rather than to the first-order ones.


References: [1] Jum-Qi Guo, Yu Hu, Pan-Pan Wang, and Cheng-Gang Shao, Chinese Physics C 48, 065104, 2024